

3D Video Processing Techniques for AR/VR Contents Generation

December 12th, 2017

Prof. Yo-Sung Ho

Gwangju Institute of Science and Technology

Yo-Sung Ho: Biographical Sketch

- ✤ 1977~1983 Seoul National University [BS, MS]
- ✤ 1984~1989 University of California, SB [Ph.D.]
- ✤ 1983~1995 Electronics & Telecomm. Research Institute (ETRI)
- ✤ 1990~1993 North America Philips Labs, NY, USA (NAPL)
- ✤ 1995~Now Gwangju Institute of Science & Technology (GIST)
- ✤ 2003~2011 Director of Realistic Broadcasting Research Center
- ✤ 1981~Now IEEE Fellow, SPIE, IEEK, KICS, KSBE
- ✤ 2004~2011 Associate Editor of IEEE Trans. on CSVT
- ✤ 1991~Now Delegate to MPEG/JCT-3V Meetings
- 1999~Now Tutorial Lecturer at Various International Conferences

Realistic Broadcasting

Research Center

Contents

- 3D Video for AR/VR Systems
- 3D Image Formats
- Free-viewpoint TV (FTV)
- MPEG Activities for 3D Video Coding
 - MVC, 3DV and FTV Standards
 - MPEG-I Visual and Light Field Imaging
- Challenging Issues
 - Depth Estimation
 - Virtual View Synthesis
 - Depth Map Upsampling
- Conclusion

3D Video for AR/VR Systems

Realistic 3D Contents

- Sports, game, dance, education
- Architecture, construction, military
- Healthcare, entertainment, fashion
- Heritage, business, engineering, film
- Scientific visualization, media

Various AR/VR Devices

- Head mounted display (HMD)
- Multi-view 3D display
- Pseudo holographic display

3DTV System

12044134510040490494

Gwangju Institute of Science and Technology

Stereoscopic Cameras

Binocular Cue

Binocular cue (disparity)

- Far object => small disparity
- Near object => large disparity

Disparity and Depth

- If the cameras are pointing in the same direction
 - (simple geometry)
 - *B: baseline* of the camera system
 - Z: depth of the object
 - -d: disparity (left x minus right x)
 - -f: focal length of the cameras
- Unknown depth is given by

$$Z = \frac{fb}{d}$$

Disparity Equation

RBRC

Research Center

Stereo Matching

Stereo matchers start from some assumptions

- Corresponding image regions are similar
- A point in one image may only match a single point in the other image
- If two matched features are close together in the images, then in most cases their disparities will be similar, because the environment is made of continuous surfaces separated by boundaries.

Many matching methods exist

- Feature-based methods which start from image structure extracted by preprocessing; and
- Correlation-based methods which start from individual grey-levels

Stereo Constraints

Color constancy

- Color of any world points remains constant from image to image
- This assumption is true under *Lambertian* Model
- In practice, given photometric camera calibration and typical scenes, color constancy holds well enough for most stereo algorithms.

Uniqueness and continuity

- Each item from each image may be assigned at most one disparity value
- Disparity varies smoothly almost everywhere

Stereo Matching Methods

Correlation approach

- A measure of similarity between windows in two images
- The corresponding element is given by window that maximizes the similarity criterion within a search region

Feature-based approach

- Extract features in the stereo pair
- Define similarity measure
- Search correspondences using similarity measure and the epipolar geometry

Multi-view Cameras

Multi-view 2D + Depth Cameras

3D Display Monitors

Anaglyph

Polarization

Light Passing Through Crossed Polarizers

Figure 1

Vertical filter

Horizontal filter

Polarized Glasses

Shutter Glasses

Parallax Barrier

Lenticular Sheet

Auto-stereoscopic 3D Display

3D Image Formats

- Stereoscopic or Multi-view Simulcast
- Multi-view Video Coding (MVC)
- Frame-Compatible Stereo Formats
- Depth-based Image Formats
 - 2D Video + Depth (2VD)
 - Multi-view Video + Depth (MVD)

Multi-view Simulcast

Independent encoding of each view

- No attempt to exploit redundancy between views
- We can use different video coding schemes:
 - MPEG-2
 - MPEG-4
 - H.264/AVC
 - HEVC/H.265

Multi-view Video Coding

AVC extension for multi-view video coding

- Stereo is an important special case
- Maintain the full resolution for all views
- Technical features
 - AVC-compatible
 - Inter-view prediction
- Adopted as 3D image format for Blu-ray Discs

Frame-Compatible Stereo

Interlaced

Checker-board

Depth-based Image Formats

- 2D Color Video + Depth
 - Backward compatible to 2D video
 - Limited depth range
 - Low rate overhead
- Multi-view Video + Depth
 - Stereo signal readily accessible
 - Better handling of occlusions
 - Higher rate overhead

3DV Reference Framework

& Reconstruction Process

Gwangju Institute of Science and Technology

Progress of Visual Media

Realistic Broadcasting

Research Center

Number of Views in Visual Media

Free-viewpoint Video

Provides

- Ability to change viewpoint freely
- Multiple Views Available
 - Render one view (real or virtual) to legacy 2D display

Useful for

 Surveillance, broadcast TV and stored interactive video, games

Free-viewpoint TV (FTV)

FTV

- Free viewpoint functionality
- View generation for auto-stereoscopic displays

History of 3DAV/MVC

2001	2002	2002	2003	2004	2005	2006
/12	/05	/12	/10	/10	/07	/01 time
First Proposal on 3D Video	Proposal on 3D A/V	3DAV Seminar	Call for Comments on 3DAV	Call for Evidences on MVC	Call for Proposals on MVC	> Evaluation of proposals
3D Video	3DAV Activities					
Applications and requirements on 3DAV						
Representation format and camera parameters						
	EEs or	n 3DAV				
				FTV	and MVC	

3DAV Exploration Experiments

◆EE1

- Omni-directional Video
- ***** EE2
 - Free viewpoint Video
- *****EE3
 - Stereoscopic video coding using MAC
- **◆**EE4
 - Depth/disparity coding for 3DTV and intermediate view interpolation

EE1: Omni-directional Video

Omni-directional Image

EE2: Free Viewpoint TV

Camera Array

Generated Multi-view Images

EE3: Stereoscopic Video

< 37 >

Left-view Image

Right-view Image

EE4: Depth/Disparity Coding

Color and Depth Information

Color Information

Depth Information

History of MPEG FTV

2001/ 12	2002/ 12	200 10	3/	2004/ 10	2005/ 07	2006/ 01	200 07)7/	2011/ 03	2011/ 11	time
Proposal of FTV	3DAV seminar	CfC 3D	C on AV	CfE on MVC	CfP on MVC	Evaluation proposals	of R F	eq. on TV	CfP on 3DV	Evaluation proposals	on of s
2001/12 Start 3DAV	DAV		2004/ Start	03 MVC (Multi	-view Video	Coding)		2009/0: MVC c	5 ompleted		
•Requirements on 3DAV •EEs on 3DAV			WVC (Inc	ved to 5 v 1	•CEs on MVC	2007 Start	 /04 3DV (3	D Video)	MVC+D 3D-AVC 3D-HEVC		
Targets converged on FTV							3DV 20 Re	(moved 09/02 quirem	d to JCT-3V ents on 3D	7 in 2012/07 V)
											2013/08 Start FTV
			•	First pl	nase of FT	v	• <u>8</u>	second	phase of	FTV	Third phase of FTV

MPEG FTV

First phase

- Multi-view video coding
- Enables efficient coding of multiple camera views
- Second phase
 - 3D video (3DV)
 - Enables viewing adaptation and display adaption of multi-view displays

Third phase

- Started in August 2013
- Targets super multi-view and free navigation applications
- To establish a new FTV framework

MVC: First Phase of FTV

Coding of multi-camera views View synthesis is not included

Multi-view Video Coding (MVC)

Requirements for MVC

	Compression efficiency					
	 View scalability/Free viewpoint scalability 					
	 Backward compatibility 					
"shall"	Low delay					
(mandatory)	Resolution, bit depth, chroma sampling format					
	 Temporal random access/View random access 					
	 Resource management 					
	 Parallel processing 					
	Spatial/Temporal/SNR scalability					
"should"	 Resource consumption 					
$(1 \cdot 11)$	 Robustness 					
(desirable)	 Picture quality among views 					
	Spatial random access					

MVC Reference Model

MVC based on H.264/AVC

- Is fully compatible to H.264/MPEG-4 AVC
- Uses hierarchical-B pictures combined in inter-view and temporal dimensions
- Reorganizes input images into a single stream prior to encoding

using hierarchical B pictures

ssociated reordering of multi-view input f compression with AVC

History of 3DV/FTV

2007	2008	2008	2008					
/04	/01	/04	/07	time				
Request for FTV Work	Call for 3D Test Data	EEs on 3DV	Vision on 3DV	> Preparing for CfP				
FTV/3DV								
Applications and requirements on 3DV								
Viewing test for evaluation								
Updating 'DERS' and 'VSRS'								

3DV: Second Phase of FTV

Vision on 3D Video

Vision on 3D Video

- To develop a new 3D video format
- To support stereo or auto-stereoscopic displays
- To make a standard for a new 3D vodeo codec within next two years.

Gwangju Institute of Science and Technology Realistic Broadcasting

Free-viewpoint TV

✤ FTV

- Free viewpoint functionality
- View generation for auto-stereoscopic displays

Ray-Space Representation

N Video + Depth

Multi-view Video plus Depth (MVD) data format

- Free-viewpoint navigation and multi-view video display
- DIBR(depth image-based rendering)-based multiview generation

Depth Search and Interpolation

Realistic Broadcasting

Research Center

RBRC

Challenging Issues

Depth/Disparity Estimation

- Sub-pixel accuracy
- Temporal enhancement to reduce flickering effects
- Depth map refinement for distorted depth map
- Coding of Multi-view Video + Depth Map
 - Coding structure
 - Depth map coding scheme
 - Bit allocation for depth map coding

Intermediate View Synthesis

- View synthesis method for depth map distortion
- Filtering along object boundaries

Depth Estimation Reference S/W

Depth Image

- Represents distance information from the camera to objects in a scene
- Quantized values with 8-bit gray scale image
- Depth Estimation Reference Software
 - Depth estimation software based on Graph-cuts
 - Use three views for generating the center depth map

Active Sensor-based Method

- Time-of-flight range sensor
 - Use the infrared range sensor
 - Time-of-flight (TOF) depth sensor
 - Depth range: quantized 8-bit values for 256 levels
- Structured light
 - Projection of a light pattern at the known angle to an object
 - Distortion in the line can be translated to depth

TOF camera

Structured light camera

Passive Sensor-based Method

Stereoscopic camera
Multi-view camera

Stereoscopic cameras

Multi-view camera arrays

View Synthesis Reference S/W

View Synthesis

- Generate a virtual viewpoint's image using provided view and depth data
- Any viewpoint image can be generated
- View Synthesis Reference Software
 - DIBR (depth image-based rendering) based virtual view generation

View Synthesis for Multi-view Displays

Gwangju Institute of Science and Technology

3D Image Warping

3D image warping using depth information

Two operations

- Project pixels of the reference view into the world coordinates
- Re-project the image into the virtual view

Realistic Broadcasting

Advanced 3D Video System

Framework for Advanced 3D Video System

- Compatible with 3D video coding under developing by the MPEG group
- Encoder: depth map generation, 3D data conversion, and 3D video coding
- Decoder: 3D data reconstruction, virtual view image generation, 3D video rendering

Realistic Broadcasting

Multi-view Video

Auto-stereoscopic Displays

- Wide baseline configuration
- Three-view configuration
 - Inputs: three texture video + three depth videos
 - Outputs: three reconstructed texture video + virtual view video(s)
- Reconstructed depth data are used for generating virtual view

Realistic Broadcasting

Third Phase of FTV

FTV needs higher specifications than 3DV

Target Applications of FTV

Super multiview with large horizontal parallax

Super multiview with full parallax

Free navigation

3D scene Network FN Display

Gwangju Institute of Science and Technology

< 62 >

MPEG-I

- ✤ Launched in the 117th MPEG
- ✤ MPEG-I (ISO/IEC 23090)

MPEG-I Parts

- Part 1: Immersive Media Architectures
- Part 2: Omnidirectional Media Application Format (OMAF)
- Part 3: Immersive Video Coding
- Part 4: Immersive Audio Coding
- Part 5: Point Cloud Coding (PCC)

MPEG-I Working Phases

MPEG-I development step

- Phase 1.a : Captured image based multi-view encoding/decoding
- Phase 1.b : Video based multi-view encoding/decoding
- Phase 2 : Video + additional data(depth, point cloud) based multi-view encoding/decoding

MPEG-I classification of available view

- 3DoF+
- Omnidirectional 6DoF
- Windowed 6DoF
- 6DoF
- MPEG-I ad-hoc group (AhG)
 - MPEG-I-Visual/Apps

Light Field Camera

LITHIUM-

BATTERY

ION

http://stateofvr.com/?page_id=17270

Inside the Lytro

The Lytro camera is the first consumer "light field camera." It uses a new technology to create photos that can have their focus changed after they have been taken. Because of this, there is no need to auto-focus, resulting in virtually no shutter delay. Here's how it works.

LENS ASSEMBLY

Camera Overview

A Lytro camera is made up of two sections. An anodized aluminum shell contains the lens assembly, while the electronics are housed within a silicone rubber grip.

Features an 8x optical zoom and a constant f/2 lens.

LIGHT FIELD SENSOR Records the rays of light entering the camera as data.

USB POWER BOARD

Capturing Light

Lytro's light field sensor captures not only the color, intensity and position of the light, but also its direction, which is lost in traditional cameras.

Changing Focus

Because all the directional information of the entering light is captured, software can change the focal plane. Clicking any point on the image brings that area into focus, whether raindrops on the surface of a window or buildings beyond.

FRANK O'CONNELL/THE NEW YORK

Realistic Broadcasting Research Center

camera CMOS sensor coupled with a micro-lens array. The array contains thousands of miniature lenses

Source: Lytro Inc.

CMOS SENSOR MICRO-LENS ARRAY

Tiny lenses divide the CMOS sensor's

Micro-Lens Array

11.2 Centimeters

MAIN PROCESSOR

ZOOM CONTROL SENSOR

LCD DISPLAY

DISPLAY AND WIRELESS BOARD

BOARD

pixels into multiple areas, each showing the image at a slightly different angle. Software uses this data to triangulate the image in 3-D space.

Micro Lens

Generate sub-aperture images

Various optical directional information

Differently focused image generation

focused in the back using destabilization

Characteristics of Micro Lens

Lytro Illum (ver.2)

Implemented 200,000 micro lens array

Light field camera and micro lens

- Provide focused image (embedded camera software)
- Plentiful color information

General camera image (left) & light field image (right)

Micro lens image and auto-focused result

Light Field Camera System

Image and camera plane

- Image plane: captured image coordinate plane (x, y)
- Camera plane: set of image plane (*s*, *t*)

Light Field vs Multi-view Camera

Structural similarity

- Multi-view camera: multiple camera array
- Light field camera: micro lens array

Camera(lens) distance

- Multi-view camera: wide
- Light field camera: narrow

Optical Structure of Light Field Camera

- Main component of light field camera
 - Main lens, micro lens array, image sensor
- Definition of internal light field camera structure
 - *D*: distance between main lens and micro lens
 - *d*: distance between micro lens and image sensor
 - *f*: distance between main lens and image sensor

Optical direction of light field camera

wangiu Institute of

ience and Technology

Lens relation in light field camera

4D Light Field

Light field coordinate system

t

Composed of image(Ω) and camera plane(Π)

 $L: \Omega \times \Pi \rightarrow \mathbb{R}, \quad (x, y, s, t) \mapsto L(x, y, s, t)$

 $(x, y) \in \Omega$, $(s, t) \in \Pi$

4D light field image structure

Light Field EPI Generation

- Epipolar plane image (EPI)
 - Horizontally or vertically fixed line stacked image
- Characteristics of each EPI
 - EPI width = sub-aperture width
 - EPI height = number of sub-aperture
 - Normalize angular tendency for range stabilization

Real Depth from Light Field EPI

Triangular proportion

Depth estimation

- Light field camera parameter (focal length)
- Coordinate variation in camera and image plane

$$\Delta x : \Delta s = -f : Z$$
 $\Delta x = -f \frac{\Delta s}{Z}$ $Z = -f \frac{\Delta s}{\Delta x}$

Disparity of Light Field EPI

- Abbreviation of real depth
 - Interchangeability between real depth and disparity

Disparity from light field EPI

- Need an angular value of EPI
- Variation ratio determine angular value

Graphical Representation of EPI

Procedure for disparity estimation

- (1) Assume a fixed row line y^*
- (2) Stacking row line of each sub-aperture image
- (3) Measuring the angular value(θ) of EPI for each pixel

(2)

EPI of horizontally fixed(y^*) coordinate

S

х

Cost Computation for Optimal Angle

- Inspect all angular directional candidate
 - Find an optimal angular value for depth estimation^[1]
 - Angular search range from $0^{\circ}(\theta_0)$ to $180^{\circ}(\theta_n)$

Cost function for optimal angle selection

$$C(E_{l}, P) = \frac{1}{N(\theta)} \sum_{P_{n} \in N(\theta)} \frac{(1-\alpha)|E(P_{n}) - E(P)|}{+\alpha[|E_{x}(P_{n}) - E_{x}(P)| + |E_{y}(P_{n}) - E_{y}(P)|]}$$

- > $N(\theta)$: number of neighbor pixels
- > E_x and E_y : x and y directional EPI gradient

[1] Y. Zhang, H. Lv, Y. Liu, and H. Wang, "Light-field Depth Estimation via Epipolar Plane Image Analysis and Locally Linear Embedding," IEEE Trans. On CSVT, vol. 27, no. 4, April 2017.

Broadcast 3-D Video

Gwangju Institute of Science and Technology

3-D Television System

- ✤ 3-D video data format
- Capture module (camera calibration and rectification)
- Correction module (illumination and color correction)
- Encoder module
- Transmission module
- Decoder module
- Interpolation module
- Display module

Realistic Broadcasting Services

Immersive Multimedia

Conventional 2-D audio-visual information

Not enough to give us vivid feeling through our five senses

Multi-modal immersive media

- Data overcoming the spatial-temporal limits
- 3-D video, multi-channel audio, computer graphic data, haptic data

✤ 3-D video is an essential part of future multimedia services

Requirements for Realism

Multi-modal information

- 3D video with depth information at multiple viewpoints
- Multi-channel audio
- CG model
- Haptic data
- High-quality data

User-friendly interaction

Research Center

2-D Video + Depth

* 'Breakdancers' sequence from MSR

Monoscopic video with per-pixel depth information for 3-D video representation

Backward-compatibility and easy adaptability to the current 2-D digital system

Multi-view Video-plus-depth

< 83 >

Time-of-flight Depth Camera

 G.J. Iddan and G. Yahav, "3D Imaging in the Studio and Elsewhere...," Proc. of SPUE Videometrics and Optical Methods for 3D Shape Measurements, 2001.

Real-time capturing of synchronized color and depth information

< 84 >

Gwangju Institute of

Science and Technology

Problems in Depth Map

Original depth map captured by a depth camera

Optical noises & No calibrated depth

Boundary mismatching

Depth Map Enhancement

Limitation in Depth Measurement

Low-resolution Depth Map

* M. Kawakita, T. Kurita, H. Kikuchi, and S. Inoue, "HDTV Axi-vision Camera," Proc. of International Broadcasting Conference, 2002

Hybrid Camera System (HCS)

Combination of both active and passive depth sensing

Specifications of HCS

Device	Specification	Details
Multi-view camera (Cannon XL-H1)	Output Format	NTSC or PAL (16:9 ratio, High Definition)
Depth Camera (Z-Cam)	Depth Range	0.5 to 7.0m
	Field of View	40 degrees
	Output Format	NTSC or PAL (4:3 ratio, Standard Definition)
Sync. Generator (LT 443D)	Output Signal	SD/HD Video Generation

Baseline distance between two cameras: 20cm

Captured Images by HCS

Output Images from HCS

Multi-view video-plus-depths (Image resolution 1920x1080)

Camera Calibration

Finding out camera parameters

- Relationship between 3-D object point and its 2-D image projection
- Form a 3x4 projection matrix P
- Homogeneous coordinate representation of points
- Camera parameters
 - Intrinsic parameters: matrix A
 - Extrinsic parameters: matrix **R** and vector **t**

$\widetilde{\mathbf{m}} \equiv \mathbf{P}\widetilde{\mathbf{M}} = \mathbf{A}[\mathbf{R} \,|\, \mathbf{t}]\widetilde{\mathbf{M}}$

Camera Intrinsic Parameters

Represented by a 3x3 matrix A

$$\mathbf{A} = \begin{bmatrix} \alpha & \gamma & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

 α , β : Focal lengths in horizontal and vertical pixels

• Focal length: distance between the camera center and the image plane

(u0,v0): Coordinate of the principal point

- Principal point: intersection between the Z-axis (principal axis) of the camera coordinate system and the image plane
- γ : Skew parameter
 - Non-orthogonality between *u* and *v* axes

Camera Extrinsic Parameters

- Represented by
 - 3x3 rotation matrix **R**
 - Translation vector **t**
- Indicate camera orientation and position

Camera Parameter Extraction

Extraction of camera parameters from 2-D pattern images at each view

< 96 >

Gwangju Institute of

Science and Technology

Problems of 1-D Parallel Camera Array

- Cameras are located around a certain line (Baseline)
- Unequal camera distances
- Different camera rotations
- Non-coplanar image planes

Ideal 1-D Parallel Camera Array

- Cameras are located on a common baseline
- Equal camera distances
- Coplanar image planes
- Perpendicular optical axes to the baseline

Multi-view Image Rectification

Why Multi-view Image Rectification?

- To compensate for non-ideal conditions
- Non-ideal conditions are due to
 - Manual adjustment of multiple cameras
 - ➤ Hard to use mechanical instruments for camera alignment
- Non-ideal conditions cause
 - ➢ High complexity in finding pixel correspondence or matching
 - Unclear viewpoints and viewpoint change

Before

After

Rectification Matrix

Find rectification transformations

- By resolving the relationship between the original and rectified camera parameters (or camera projection matrices)
- Rectified camera parameters
 - ≻ Relocate camera centers
 - ► Rotate all the image planes
 - ► Adjust and equalize the intrinsic parameters

Realistic Broadcasting

Research Center

Color Inconsistency Problem

Color Mismatch Problem

Camera Properties : Gain, Offset, Gamma, White Balance

Example of Color Mismatch

Race

Uli

Related Issues

< 104 >

Correspondence(compression, stereo matching)

Compare color values

- View Synthesis
 - Refer to neighboring images
 - Cause of stain

Gwangju Institute of

Science and Technology

Correcting Methods

- 1. Global Property
- Average brightness, histogram

- 2. Corresponding Property
 - Color Chart

View 1

View 2

Histogram Matching

 $M[v] = u \quad \text{with} \quad c_R[u] < c_D[v] \le c_R[u+1]$

Color Chart

Capturing the Standard Color Chart

Correspondence

Block-based Method

- Dense correspondence
- Low accuracy

Feature-based Method

- Sparse correspondence
- High accuracy

Camera Characteristic Curve

Realistic Broadcasting

Research Center

Corresponding Points

Using SIFT Algorithm

View 3

View 4

R	G	В
147	146	155
116	107	72
131	134	149
138	140	146
115	114	129
65	44	39
178	177	180
59	71	93
59	71	93
91	92	92
	•••	•••

R	G	В
152	155	161
169	124	88
141	148	159
152	155	161
113	116	127
31	27	25
193	193	192
52	63	84
52	63	84
99	100	99
	•••	

Finding Coefficients

Non-linear Regression

Define Error

$$e_{i}(\overline{\beta}) = y_{i} - \beta_{0} \{ x_{i} / (2^{bitdepth} - 1) \}^{\beta_{2}} \times (2^{bitdepth} - 1) + \beta_{1}$$
$$E(\overline{\beta}) = \sum_{m} e_{i}^{2}(\overline{\beta})$$

Iterate

$$\overline{\beta}^{s+1} = \overline{\beta}^{s} + \delta \overline{\beta}$$
$$(\overline{J}_{\overline{e}}^{T} \overline{J}_{\overline{e}}) \delta \overline{\beta} = -\overline{J}_{\overline{e}}^{T} \overline{e}$$

Minimize Error

Results of Regression

$$P_{ref} = C_{gain} \left\{ P_{tar} / (2^{bitdepth} - 1) \right\}^{C_{gamma}} \times (2^{bitdepth} - 1) + C_{offset}$$

Coefficient	Red	Green	Blue
Gain	0.5456	0.1136	0.3702
Offset	13.9680	0.46	0.37
Gamma	0.42	0.39	0.38

Experimental Result

Experimental Result

3-D Warping in HCS

RBRC

Research Center

3-D Warping

Forward Projection

- World -> Camera: $\widetilde{\mathbf{x}} = \mathbf{P}\mathbf{X}$
- Backward Projection
 - Camera -> World: $\mathbf{X} = \mathbf{R}^{-1} \cdot \mathbf{A}^{-1} \cdot \widetilde{\mathbf{x}} \cdot \mathbf{D}(\mathbf{x}, \mathbf{y}) \mathbf{R}^{-1} \cdot \mathbf{A}^{-1} \cdot \mathbf{T}$

RBRC

Color Segmentation

Rectified Views

Color Segmentation of Rectified Views

* D. Comaniciu and P. Meer, "Mean shift: A Robust Approach toward Feature Space Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002.

Initial Disparity for Each Segment

Initial disparity for each segment is set to the average value of its corresponding warped disparities

Segment-based Stereo Matching

One segment

Assignment of Initial disparity

- Segmentation-based stereo matching using SAD
- Initial SAD from 3-D warping results
- Min Disp SAD in a small search range

Search range is set from (*initial disparity*-5) to (*initial disparity*+5)

Refinement of Disparity Map

Modified Belief Propagation (BP)

- Modified BP
 - Search range restriction using initial depth information
- Data cost energy function

 $d = \lambda \min(|I_l(x, y) - I_r(x - d, y)|, \tau) , -s \le d \le +s$

- λ : scaling factor, τ : truncation value (threshold of cost)
- s: search range

Realistic Broadcasting

Research Center

Final Multi-view Depth Map

Final multi-view depth map from view 1 to view 5

Output Images from HCS

Multi-view video-plus-depths (Image resolution 1920x1080)

3D Rendering using View Synthesis

Render Novel Views using View Synthesis

- Generate virtual viewpoint images
- Depth data is necessary for view synthesis

Depth Image-based Rendering

Construct consecutive 3D video using texture images and depth maps
Assumption: we have the depth information in advance

<image>

General Block Diagram of DIBR

3D Image Warping

3D Image Warping Using Depth Maps

Two Operations

wangiu Institute of

ience and Technolog

- Project the pixels of the reference view into world coordinates
- Re-project the image in world coordinates into the virtual view

< 126 >

Procedure of View Synthesis

Warped Image

Depth-based 3D Warping

Use warped depth image in virtual view

Hole Area

Newly Exposed Area (white)

< Warped Images: 3D image warping left to right >

< Warped Images: 3D image warping right to left >

< 128 >

Occlusion and Disocclusion

Occlusion

Disappeared region, overlapped region

Disocclusion

Revealed region, exposed region

Realistic Broadcasting

Research Center

RBR

Small Hole Problem

Real depths may not be perfectly represented by the depth map.

Small holes are generated due to

- Truncation errors of converting floating point (real depth) to integer value
- Quantization errors of representing real depth with intensities in the depth map

Hole Filling

Holes can be filled with texture information from other views

Replace the corresponding data

• Fill the holes with the region colored in white

< Corresponding Texture for the Right Side Hole >

< Corresponding Texture for the Left Side Hole >

Blending

Blend Two Synthesized Images to one final image

Realistic Broadcasting

Research Center

3-D Scene Rendering

Generated Intermediate Views

Intermediate images at virtual viewpoints

Conclusion

- 3D Video for AR/VR Systems
- 3D Image Representation
- MPEG Activities for 3D Video Coding
 - 3D Audio Visual (3DAV)
 - Multi-view Video Coding (MVC)
 - Free-viewpoint TV (FTV)
 - 3D Video Coding (3DVC)
 - MPEG-I Visual
- Challenging Issues of FTV
 - Capture and calibration with flexible camera arrangement
 - Data format and view synthesis
 - Real-time generation of super multi-view images
 - Free navigation over a wide area

Acknowledgments

MPEG/JCT-3V Contributions

<u>http://mpeg.chiariglione.org/standards/explorati</u>

on/free-viewpoint-television-ftv

- GIST RBRC Members
- GIST VCL Members

https://vclab.gist.ac.kr/publications_sci_journals

Thank you for your attention!

Any questions?

Prof. Yo-Sung Ho

Gwangju Institute of Science and Technology (GIST) Realistic Broadcasting Research Center (RBRC) +82-62-715-2211 hoyo@gist.ac.kr http://rbrc.gist.ac.kr/ http://vclab.gist.ac.kr/

Contact Information

Prof. Yo-Sung Ho

- **•** +82-62-715-2211
- hoyo@gist.ac.kr
- http://vclab.gist.ac.kr/

Realistic Broadcasting Research Center (RBRC)

- +82-62-715-2258
- http://rbrc.gist.ac.kr/

Gwangju Institute of Science and Technology (GIST)

http://www.gist.ac.kr/

